36 research outputs found

    India nudges to contain COVID-19 pandemic: A reactive public policy analysis using machine-learning based topic modelling.

    Get PDF
    India locked down 1.3 billion people on March 25, 2020, in the wake of COVID-19 pandemic. The economic cost of it was estimated at USD 98 billion, while the social costs are still unknown. This study investigated how government formed reactive policies to fight coronavirus across its policy sectors. Primary data was collected from the Press Information Bureau (PIB) in the form press releases of government plans, policies, programme initiatives and achievements. A text corpus of 260,852 words was created from 396 documents from the PIB. An unsupervised machine-based topic modelling using Latent Dirichlet Allocation (LDA) algorithm was performed on the text corpus. It was done to extract high probability topics in the policy sectors. The interpretation of the extracted topics was made through a nudge theoretic lens to derive the critical policy heuristics of the government. Results showed that most interventions were targeted to generate endogenous nudge by using external triggers. Notably, the nudges from the Prime Minister of India was critical in creating herd effect on lockdown and social distancing norms across the nation. A similar effect was also observed around the public health (e.g., masks in public spaces; Yoga and Ayurveda for immunity), transport (e.g., old trains converted to isolation wards), micro, small and medium enterprises (e.g., rapid production of PPE and masks), science and technology sector (e.g., diagnostic kits, robots and nano-technology), home affairs (e.g., surveillance and lockdown), urban (e.g. drones, GIS-tools) and education (e.g., online learning). A conclusion was drawn on leveraging these heuristics are crucial for lockdown easement planning

    Lockdown impacts on residential electricity demand in India: A data-driven and non-intrusive load monitoring study using Gaussian mixture models.

    Get PDF
    This study evaluates the effect of complete nationwide lockdown in 2020 on residential electricity demand across 13 Indian cities and the role of digitalisation using a public smart meter dataset. We undertake a data-driven approach to explore the energy impacts of work-from-home norms across five dwelling typologies. Our methodology includes climate correction, dimensionality reduction and machine learning-based clustering using Gaussian Mixture Models of daily load curves. Results show that during the lockdown, maximum daily peak demand increased by 150-200% as compared to 2018 and 2019 levels for one room-units (RM1), one bedroom-units (BR1) and two bedroom-units (BR2) which are typical for low- and middle-income families. While the upper-middle- and higher-income dwelling units (i.e., three (3BR) and more-than-three bedroom-units (M3BR)) saw night-time demand rise by almost 44% in 2020, as compared to 2018 and 2019 levels. Our results also showed that new peak demand emerged for the lockdown period for RM1, BR1 and BR2 dwelling typologies. We found that the lack of supporting socioeconomic and climatic data can restrict a comprehensive analysis of demand shocks using similar public datasets, which informed policy implications for India's digitalisation. We further emphasised improving the data quality and reliability for effective data-centric policymaking
    corecore